
1. Introduction
Temperature and precipitation are dominant factors controlling the abundance and form of life on Earth. 
The intrinsic coupling between atmospheric temperature and the strength of the hydrological cycle is well 
understood (Betts & Ridgway,  1988; Jeevanjee & Fueglistaler,  2020; Jeevanjee & Romps,  2018; Manabe & 
Wetherald, 1967; P. A. O’Gorman et al., 2012; Pendergrass & Hartmann, 2014a). Under forcing from changes in 
greenhouse-gases such as carbon dioxide, the atmospheric radiative cooling increases, and correspondingly the 
hydrological cycle intensifies, and global average evaporation and precipitation increase (Allen & Ingram, 2002; 
Betts & Ridgway, 1988; Boer, 1993; Held & Soden, 2006). Model calculations and observations indicate that 
under global warming global atmospheric relative humidity changes little, and consequently specific humidity 
scales with the saturation vapor pressure and increases at the rate given by the Clausius-Clapeyron equation (Held 
& Soden, 2000, 2006; P. O’Gorman & Muller, 2010; Trenberth et al., 2005). Correspondingly, strong rainfall 
events scale like, or even exceed, the atmospheric specific humidity (Fildier et al., 2017; Muller et al., 2011; P. A. 
O’Gorman, 2015; P. A. O’Gorman & Schneider, 2009; Pendergrass & Hartmann, 2014b; Romps, 2011).

Numerical climate model simulations further provide a geographically more detailed prediction of local 
hydroclimatic changes with warming, whereby the simulations suggest generally a response known as 
“wet-get-wetter/dry-get-drier.” This response pattern is expected for an atmosphere where the geograph-
ical pattern of atmospheric moisture convergence scales like the atmospheric water vapor (which scales 
approximately like the saturation vapor pressure, i.e., the Clausius-Clapeyron rate) and changes in atmos-
pheric circulation are secondary. Since the atmospheric moisture convergence equals the difference between 
precipitation (P) and evaporation (E), that is, P − E, global warming will lead to an amplification of the 
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present-day geographical pattern of P − E (Held & Soden, 2006). This result, however, requires in addition 
to a fixed atmospheric circulation, an unlimited moisture source at the surface. Over land, since evapotran-
spiration is constrained by soil moisture (SM), which in turn depends on the past evolution of P − E, the 
atmospheric convergence argument underlying the wet-get-wetter/dry-get-drier result may be less applicable 
(Byrne & O’Gorman, 2015; Chadwick et al., 2013; Greve et al., 2014; Greve & Seneviratne, 2015; Held & 
Soden, 2006).

Climate model simulations suggest over land a mean decrease of surface SM with warming (Berg 
et  al.,  2016,  2017; Berg & Sheffield,  2018; Cheng et  al.,  2017; Dai,  2013; IPCC,  2014). Along with this 
surface soil drying, an increase in the frequency of hotter, drier days is also widely demonstrated (Berg 
et al., 2014; Dirmeyer et al., 2021; Donat et al., 2017; Fischer et al., 2007; McKinnon et al., 2021; Seneviratne 
et  al.,  2013; Vogel et  al.,  2017). Conversely, wetter conditions seem to be indicated by studies reporting 
increased evapotranspiration (Greve et al., 2014; Jung et al., 2010) and increased occurrences of more extreme 
precipitation, flooding, and runoff (Donat et al., 2016; Hirabayashi et al., 2013; Kooperman et al., 2018; P. A. 
O’Gorman, 2015; Tabari, 2020). These seemingly divergent conclusions regarding drying or moistening of 
the land surface reflect the complexity of hydroclimatic changes over land, and make it difficult to formulate 
a concise and coherent terrestrial analog to the wet-get-wetter/dry-get-drier result for a fixed circulation over 
ocean.

In the following, we analyze climate model simulations in a novel process-based phase space that facilitates inter-
pretation of changes in land hydroclimate in terms of theoretical arguments from an atmospheric convergence 
perspective vis-a-vis the land/vegetation-process perspective that emphasizes the non-linear relationship between 
SM and evapotranspiration.

2. Data and Method
2.1. Climate Models and Experiments

We analyze changes in land hydroclimate following forcing from increasing atmospheric carbon dioxide in simu-
lations submitted to the Climate Model Intercomparison Project Phase 5 (Taylor et al., 2012) and Phase 6 (Eyring 
et al., 2016). The change is calculated as the difference between the last 30 years (20 years for MRI-CGCM3) 
of the abrupt-4 × CO2 experiment minus the 30 years of the pre-industrial control simulation (following the 
“piControl” protocol) for CMIP5, and the 30 years over 1850–1880 of the historical simulation (following the 
“historical” protocol) for CMIP6. Results using simulations with gradual CO2 increase instead of abrupt 4 × CO2 
are very similar (not shown).

Our analysis focuses on the tropics and the subtropics (i.e., 30°S–30°N) where surface conditions have a fairly tight 
connection to deep convective activity, and as such to the tropical climate (Emanuel et al., 1994; Romps, 2014; 
Zhang & Fueglistaler, 2020). The analysis is further narrowed to the warm season when land-atmosphere coupling 
is strongest and extreme events (heat extremes, rainfall or lack thereof) may have particularly pronounced impacts 
on society. The warm season is defined as the 150 days centered on 15 July for the Northern Hemisphere, and 
150 days centered on 15 January for the Southern Hemisphere, giving a total of 4,500 days (30 years times 
150 days) for each simulation. Results using data of the full calendar year are similar but have smaller amplitudes 
(see Figure S1 in Supporting Information S1).

Results are based on a total of 16 climate models that submitted the complete set of data for variables we 
require at daily (or sub-daily) resolution, with eight CMIP5 models (GFDL-ESM2M, CanESM2, ACCESS1-0, 
ACCESS1-3, FGOALS-g2, MRI-CGCM3, MIROC5, and NorESM1-M) and eight CMIP6 models (CanESM5, 
MIROC6, GFDL-CM4, MRI-ESM2-0, MPI-ESM1-2-HR, IPSL-CM6A-LR, CMCC-ESM2, INM-CM5-0). This 
list restricts the models to one model per modeling center (unless the schemes of particular relevance to simu-
lations of the land hydroclimate are different, e.g., ACCESS1-0 and ACCESS1-3 use different land surface 
and cloud schemes), and also excludes simulations with inconsistent definition of variables (e.g., CNRM-CM5 
reports SM in the top 1-cm layer instead of the top 10-cm layer). The land hydroclimate is characterized by the 
following variables: surface SM (moisture in the top 10 cm soil layer; SM), surface latent heat flux (LH, and 
as such also evapotranspiration ET), daily maximum surface air temperature 𝐴𝐴

(

�̂�𝑇
)

 , precipitation (P), and surface 
air temperature (T). The calculation of the climatological aridity index (AI) further uses the downwelling and 
upwelling shortwave and longwave radiation fluxes at the surface in the reference simulations.
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2.2. The Soil Moisture-Evapotranspiration Relationship Over Land

The SM limitation on evapotranspiration (ET, or LH) substantially contributes to the complexity of climate 
change over land. The non-linear relationship between SM and ET largely determines how available energy 
is partitioned between latent, sensible, and ground heat fluxes. The schematic in Figure 1a (following Budyko 
et al., 1974; R. D. Koster et al., 2004; R. Koster et al., 2009; Seneviratne et al., 2010; Schwingshackl et al., 2017) 
shows four behavioral regimes connecting ET and SM: the dry regime, where ET is close to zero, the transi-
tional regime, where ET increases monotonically with SM, the wet regime where ET is not determined by SM 
but rather by radiative energy availability, and an active-rain regime where ET is strongly limited due to high 
boundary layer relative humidity and energy limitations from cloudiness. Rainfall is not zero outside the active 
rain regime, but it is the dominant factor in this regime. Daily SM, LH, and precipitation data from an example 
grid cell in southern Africa from GFDL-ESM2M are shown in Figure 1c. The high precipitation rates and sharp 
drop-off of ET at high SM values indicate the need to introduce the active-rain regime. This regime is discussed 
further below, and is supported by plots of surface air relative humidity and surface net radiation in Figure S2 in 
Supporting Information S1.

Figure 1. (a) Schematic of the regimes of surface latent heat flux (LH) as a function of surface soil moisture (SM; top 10 cm): The dry regime is near the lower 
SM limit; in the transitional regime SM and evapotranspiraton are tightly coupled; in the wet regime, past the critical point (SMcrit), SM is not the limiting factor for 
evapotranspiration; and in the active-rain regime evapotranspiration is limited by radiation and high boundary layer relative humidity. The transitional regime has two 
mechanistic pathways: the transpiration path (dashed orange line) where large changes in LH occur with small changes in SM, and the bare soil evaporation path (solid 
orange line) with typically smaller sensitivity of LH to SM. (b) The geographical pattern of the CMIP5 multi-model mean climatological warm-season aridity index 
(AI) percentiles (color coded) in the tropics, with qualitative labeling of quartiles (moist, semi-moist, semi-arid and arid). (c) The LH–SM relationship at an example 
grid cell from southern Africa in the base climate state (piControl) in GFDL-ESM2M: each dot represents 1 day (4,500 days in total), and the color corresponds to daily 
mean precipitation rate. (d) LH (upper panel) and evaporative fraction (LH/Rnet, lower panel) sorted by and aggregated into local SM percentile bins at this example 
grid cell; markers are color-coded by the precipitation rate in the corresponding SM percentile bins. (e, f) Schematic of the SM regimes in the daily SM percentile/
climatological AI percentile phase space. The background color corresponds to CMIP5 multi-model mean (e) LH in the base climate state and (f) changes in LH 

between the 4 × CO2 and the piControl climate states, normalized by the mean tropical ocean warming 𝐴𝐴

[

Δ𝑇𝑇

]

𝑜𝑜

 .
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The critical SM point, SMcrit (Figure  1a), separates moisture-limited days (in both the dry and transitional 
regimes) from energy-limited days (in both the wet and active-rain regimes). This critical point is dependent on 
soil and vegetative properties and is variable in space and time because dynamic roots can extend below the moni-
tored SM zone (here 10 cm) and substantially increase access to moisture and alter the position of SMcrit in this 
functional relationship (illustrated as the dashed orange line in Figure 1a). It is in the transitional water-limited 
regime that SM conditions, vegetation types and plant physiological processes have the largest impact on surface 
climate (Seneviratne et al., 2010; Gentine et al., 2019, see also Figure S2 in Supporting Information S1 for the 
temperature condition in correspondence to Figure 1c). Correspondingly, biases and differences among models 
may lead to significant errors and uncertainty in predictions of ET and temperature. The frequently used evap-
orative fraction (Budyko et al., 1974; R. D. Koster et al., 2004; R. Koster et al., 2009; Seneviratne et al., 2010; 
Findell et al., 2011), defined as the ratio of the LH to the net radiative flux (Rnet), does not separate the active-rain 
regime from the wet regime since it approaches unity in both energy-limited regimes and remains close to unity 
during active rainfall as both LH and Rnet decrease. This can be seen in Figure 1d, where LH (upper panel) and the 
evaporative fraction (lower panel) are plotted against the SM percentiles at this location. Above the local 40th SM 
percentile, evaporative fraction stays close to 1, while LH decreases. That is, evaporative fraction cannot resolve 
the important hydroclimatic dynamics in this regime discussed in Sections 3 and 4.

2.3. The Aridity/Soil Moisture Phase Space

The daily model output is mapped from geographical space to a phase space (Figure 1e) defined by the clima-
tological AI of a given location (y-axis) and the daily SM (x-axis). Both variables are transformed from their 
absolute value to their percentile rank in the distribution of the climatological AI in the tropics and subtropics, 
and in the distribution of daily SM at each grid cell over the period considered (see Section 2.1). For the clima-
tological AI, we adopt the energy-based definition in (Milly & Dunne, 2016), which uses an estimate of potential 
evapotranspiration (PET) that is both simple and produces a better match of hydrological sensitivity to warming 
in climate models than other PET estimates:

AI = PET∕𝑃𝑃 = 0.8 ⋅ R
sfc

net
∕(𝐿𝐿𝑣𝑣 ⋅ 𝑃𝑃 ), 

where P is precipitation, 𝐴𝐴 R
sfc

net
 is the net surface radiative flux, and Lv is the LH of vapourization. The constant 

0.8 is set empirically to take into account the observational fact that not all available energy goes into ET even 
if surface water is not limited (Milly & Dunne, 2016; R. D. Koster & Mahanama, 2012). Figure 1b shows the 
geographic distribution of AI percentiles.

The transform into percentile space groups the regimes by specific physical conditions (e.g., dryness of the 
surface), and facilitates interpretation compared to the spatially-aggregated joint histograms or temporally/
spatially averaged values of a variable (e.g., evapotranspiration, precipitation, or temperature). The daily SM 
percentile shows the temporal dynamic range of SM, and the separation by climatological AI ensures averaging 
over locations (grid cells) with similar distributions of daily SM. Thus, the SM percentile axis represents tempo-
ral variations in daily SM (from wet days to dry days) averaged over locations with equal AI percentile, and the AI 
percentile axis represents the geographical climatological separation of locations, ranging from very moist trop-
ical rainfall regions (low AI percentile) to deserts (high AI percentile). Each area element in this 2-dimensional 
percentile phase space carries equal weight in terms of both the amount of days and the amount of the land area it 
represents; therefore, differences plotted in this phase space (e.g., LH changes shown in Figure 1f) quickly reveal 
the percent of time and space that experience certain changes (here in Figure 1f, i.e., decrease or increase of ET).

Changes in the magnitude of a variable X in the AI/SM phase space are calculated as the difference of the value in 
the 4 × CO2 experiment minus the reference simulation (see Section 2.1), normalized by the mean warming over 
ocean to account for the different climate sensitivities among models. When mapping onto the AI axis, both the 
4 × CO2 and the reference simulations are sorted by the AI values in the reference simulation. Figures 1e and 1f 
show that the AI/SM phase space recovers the evapotranspiration regimes discussed above. As illustrated in 
Figure 1d for a single grid cell, the regimes capture the shape of LH as function of SM. In the SM/AI phase space 
(Figure 1e), the tropics as a whole have the LH at its minimum in the dry regime, it increases with SM (positive 
gradient) in the transitional regime, its change slows down in the wet regime, and then it decreases in the active 
rain regime. For the multi-model mean changes in LH following global warming (Figure 1f), the change is negli-
gible in the climatologically dry regions (large AI), increases during days where a location is in the wet or active 
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rain regime, and decreases during days when a location is in the transitional regime around the critical point. By 
grouping locations and times with similar characteristics, the AI/SM phase space allows for a process-informed 
interpretation of the hydroclimatic changes over a large domain (here, tropics and subtropics) and time period.

3. Results
3.1. Evapotranspiration Changes in Individual Models

The map view of the projected warm-season mean changes in LH (normalized by mean ocean surface warming) 
in each of the eight CMIP5 models show large regional heterogeneity and prominent differences between models 
(Figure S3 in Supporting Information S1). For example, in key regions such as the Amazon and Australia, models 
lack consensus on even the projected sign of change. By contrast, Figure 2 shows the changes in ET (normalized 
by mean ocean surface warming) in each of the eight CMIP5 models (results for the CMIP6 models are similar) 
organized in the SM/AI phase space. All the models show ET reductions extending diagonally from the lower left 
corner to the upper right corner of the AI/SM phase space: The largest reductions in ET occur on days that are 
relatively dry in climatologically wet regions and on days that are relatively wet in climatologically dry regions. 
This band of reduced ET broadly aligns with the transitional regime. Above the transitional regime (at higher AI 
percentiles), the models show only small ET changes in the dry regime. To the right of the transitional regime (at 
higher SM percentiles), all models show increasing ET in the wet regime. Notably, ET in the wet regime increases 
at rates (≲2%/K, not shown) similar to the rates of increase found over the ocean dictated by the increase in net 
atmospheric radiative cooling.

Despite the generally consistent patterns, differences between individual models in Figure  2 are particularly 
evident in the space-time extent and intensity of the ET change in the transitional regime. Growth of vegetation, 
changes in rooting depth and distribution, heterogeneity of sub-grid land tiles within a grid cell, and differences 
in soil texture and hydraulic properties among grid cells all contribute to variations in the value of the critical 

Figure 2. Changes of evapotranspiration (surface latent heat flux; W m −2) in eight CMIP5 climate models in response to an abrupt quadrupling of CO2 in the novel 
aridity index (AI)/soil moisture (SM) phase space. The y-axis is climatological AI percentiles, and the x-axis is local daily SM percentiles. Changes are normalized by 
the mean tropical ocean warming in each simulation. The pink lines show the surface SM isoline of 20 kg m −2 in the top 10 cm (an indicator of the critical SM value) in 
the base state (piControl, solid lines) and the perturbed climate state (4 × CO2, dashed lines).
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SM. However, the phase space employed here shows that a surface SM value of 20 kg m −2 in the top 10 cm of the 
ground (solid and dashed pink lines for the reference and 4 × CO2 simulations respectively) aligns well with the 
drying pattern in most models, and we use this value as an approximation of SMcrit to analyze how regimes shift 
under global warming. In all but one model (NorESM1-M), the critical SM shifts toward higher SM percentiles 
(dashed pink line is to the right of solid pink line in 7 of 8 panels of Figure 2), indicating that locations are, over 
the course of the warm season, more frequently in the transitional regime in the warmer climate state.

To summarize, Figure 2 shows that the models exhibit a similar pattern of change arising from the LH–SM 
relationship, but they differ in the percentages of space and time that each regime occupies. Thus, while models 
may show disagreement for the predicted changes for specific regions (e.g., key regions such as the Congo or the 
Amazon, some models predict an increase and others a decrease in ET; Figure S3 in Supporting Information S1), 
they show coherent patterns in terms of changes for specific regimes.

3.2. Multi-Model Mean Hydroclimatic Change

Figure 3 summarizes the multi-model mean (average over all eight CMIP5 and eight CMIP6 models) prediction 
of changes in terrestrial hydroclimate between the 4 × CO2 and the reference simulations. The separate panels 
show the change per unit ocean warming in SM, LH (∝ ET), daily maximum temperature 𝐴𝐴

(

�̂�𝑇
)

 , P, and P − E. 
As previously reported (Berg & Sheffield, 2018; Dai, 2013; IPCC, 2014), models predict a general decrease of 
surface SM (Figure 3a), but the decrease is uneven across time and space. The SM decrease peaks in both the 

Figure 3. Multi-model mean (16 CMIP5 and CMIP6 models, see Section 2.1) changes in surface soil moisture (SM), latent heat flux (LH), daily-maximum 
temperature 𝐴𝐴

(

�̂�𝑇
)

 , precipitation (P, times Lv to convert into the same unit as LH), and P − E between the 4 × CO2 and the base climate states, normalized by the 

simulation's mean tropical ocean warming 𝐴𝐴

[

Δ𝑇𝑇

]

𝑜𝑜

 . Pink lines show the SM value of 20 kg m −2 in the top 10 cm for the base (solid) and the 4 × CO2 (dashed) climate 
states. The cyan curves in panel d show the base-climate precipitation rates of 0.5, 8 and 16 mm/day, and the blue curve in panel e shows the base-climate P − E value 
of 0 W/m 2. Panel f shows the warm-season mean (panel e averaged over the x-axis) base-climate P − E on the left and the change of it in the warm climate on the right. 
The thick black curve is the multi-model mean, and the gray lines are for individual models.
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transitional and the wet regimes. In the transitional regime (around the critical SM value which is approximated 
by the pink line for SM at 20 kg m −2; see Figure 2), evapotranspiration also decreases (Figure 3b); while in the 
wet regime, evapotranspiration is not SM limited and increases despite the decrease in SM. This indicates increas-
ing atmospheric demand, stemming from higher Rnet at the surface (not shown).

The daily maximum temperature (𝐴𝐴 �̂�𝑇  , Figure 3c) increases most in the dry regime (i.e., in the highest AI percen-
tiles) as expected (e.g., Duan et al., 2020; Zhou, 2016), since the LH, and hence also changes therein, are negli-
gible for the surface energy budget. The corresponding temperature increase is fairly uniform across all but the 
very highest SM percentiles where the models predict an increase in rainfall, SM and evapotranspiration. In the 
regions that are in the dry regime, the temperature distribution shifts to higher temperatures without changing 
shape (Duan et al., 2020).

In addition to the expected maximum in the dry regime, Figure 3c reveals a second maximum of daily maximum 
temperature increase that is aligned with the critical SM. In the transitional regime, a decrease in SM (see panel a) 
may shift a number of days from the wet regime with unconstrained evapotranspiration to the transitional or even 
dry regime with soil-moisture limited evaporation (panel b). The reduction in LH flux then leads to the second 
maximum of warming along the critical SM line.

In the generally moist regions (at low AI percentiles), the daily maximum temperatures increase most at low SM 
percentiles (i.e., when the region's SM is close to the critical SM), and least at high SM percentiles in the active 
rain regime. Days at low SM percentiles are warmer than days at high SM percentiles in the base climate, there-
fore the structure of warming we see here echoes previous findings for changes in the summertime temperature 
distribution shape: the warm tail of the temperature distribution shows amplified warming compared with the 
mean (Byrne, 2021; Donat et al., 2017; Duan et al., 2020; Vogel et al., 2017). These changes can be mapped back 
to geographic space to identify regions with enhanced vulnerability to heat extremes.

Figure 3d shows that precipitation changes little in the dry regime, decreases markedly in the transitional and wet 
regimes (the magnitude is about 0.1–0.2 mm/day per degree warming), and increases strongly in the active rain 
regime (high SM percentiles; the magnitude ranges from about 0.4 to 4 mm/day per degree warming). The very 
different changes in the wet and active rain regime shows the need to introduce the “active rain” regime, as the 
traditional “energy limited” regime (see Figure 1a) would average over rainfall changes with opposite signs. The 
large rainfall increases in the active rain regime reflect that extreme rainfall scales at rates similar to (or stronger 
than) the Clausius-Clapeyron scaling (Fildier et al., 2017; P. A. O’Gorman & Schneider, 2009; Pendergrass & 
Hartmann, 2014b; Pfahl et al., 2017). This rainfall increase is partly compensated by a decrease in rainfall totals 
at lower SM percentiles, consistent with a tendency toward stronger but fewer rain events (Lau et  al.,  2013; 
Pendergrass & Hartmann, 2014b).

Finally, Figure 3e shows the change in the difference between precipitation and evaporation (P − E). This term 
is at the heart of the wet-get-wetter/dry-get-drier paradigm describing changes over oceanic regions (Held & 
Soden, 2006) discussed above. Figure 3e shows that when examined in the AI/SM phase space, the pattern of 
changes in P − E aligns with the SM regimes, indicating that the novel phase space employed here can help to 
interpret similarities and differences between changes over land and the wet-get-wetter/dry-get-drier paradigm, 
as discussed below.

4. Discussion
The transformation from geographical space to the AI/SM phase space of the key variables characterizing land 
climate properties facilitates the discussion of the changes in terms of the two canonical, complementary perspec-
tives: On the one hand, the local perspective that emphasizes the importance of the SM constraint on evapotran-
spiration, and on the other hand the global perspective that emphasizes the global constraints on atmospheric 
moisture fluxes and their convergence.

Land as a whole is a region of net atmospheric moisture convergence and correspondingly P − E ≥ 0 when 
integrated over the climatological annual cycle. Taken at face value, the wet-get-wetter perspective would predict 
on average an increase in P − E, which one may interpret as a tendency toward overall moister conditions. The 
AI/SM phase space allows us to look beyond the time-mean picture (e.g., the 5 months warm-season considered 
here) and explore the redistribution of P − E on daily timescales, and how that redistribution depends on SM 
regime.
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Figure  3e shows that there is very little change in P  −  E in the dry regime, modest increases in the transi-
tional regime, decreases in the wet regime, and sharp increases in the active rain regime. The change in rainfall 
(Figure 3d) drives the change in P − E in the wet regime and active rain regimes: in both regimes evapotran-
spiration increases, but rainfall decreases in the wet regime and increases in the active-rain regime. The x-axis 
of the SM/AI phase space is daily SM, so the drying/wetting contrast in Figure 3e indicates that it is the wettest 
days that get wetter in a warmer world. The large temporal redistribution of P − E over land suggests that the 
time-mean change in P − E averaged over all land may be of secondary importance to understand the change of 
the land hydroclimate with global warming. In fact, Figure 3f, right panel, shows the time-mean change in P − E 
(i.e., Figure 3e averaged over the x axis). The figure shows that upon warming, only a few models show a clear 
increase in the time-mean, while most models and the multi-model mean show small or uncertain changes in the 
time-mean. It is the redistribution over time (expanding the x-axis into daily SM percentiles) that leads to the 
prominent pattern of changes in rainfall (Figure 3d) and P − E (Figure 3e).

The pattern of a decrease in P  −  E in the wet regime and an increase in P  −  E in the active rain regime 
bears resemblance to the wet-get-wetter/dry-get-drier result, but with important differences: Unlike in the 
wet-get-wetter/dry-get-drier picture, the sign change does not align with the P − E = 0 isoline of the base state 
(Figure  3e, blue line). Instead, the base state P  −  E  =  0 isoline is in rough alignment with the critical SM 
isoline  which separates the transitional and wet regimes. Furthermore, the increase of P − E in the transitional 
regime (the green color around the pink lines in Figure 3e) is driven by a reduction in E that is larger in magni-
tude than the reduction in P, resulting in reduced moisture divergence (therefore this positive change in P − E 
should be interpreted as drying instead of moistening). The difference P − E is, the difference between a slowly 
varying term (evapotranspiration; see the fairly homogeneous change in LH in the wet and active rain regimes 
in panel b) and a highly intermittent term (rainfall). Over ocean, the redistribution of precipitation has no impact 
on evaporation, but over land, the associated SM decrease (Figure 3a) shifts the percentile position of the critical 
SM value which indicates an increase in the fraction of time spent in the transitional and dry regimes where SM 
constrains evapotranspiration.

5. Summary and Outlook
Accurate predictions of future changes in hydroclimate over land, in particular the magnitude and frequency 
of extreme heat, extreme rainfall, and droughts are of paramount importance for society. Process-level under-
standing of land-atmosphere interactions has greatly improved, but there remain gaps in our understanding in 
particular with respect to: (a) the connection between changes in different types of extremes; and (b) the connec-
tion between changes in local land-atmosphere interactions with the global-scale thermodynamic and radiative 
constraints on the response of the hydrological cycle to climate forcings.

The process-oriented AI/SM phase space presented here preserves the mechanistic local, daily-mean time 
scale understanding as summarized in Figure 1a while substantially reducing the dimensionality of the global, 
time-varying problem in order to provide an integrated, big-picture perspective. Using this transformation from 
geographical/time space to the SM/AI phase space yields remarkably clear results (Figure 3), building physical 
intuition for the changes, and the coupling of changes between different variables. Specifically, model predic-
tions (Figure  3) show for the tropical and subtropical warm season a robust and coherent pattern of change 
aligned with the widely used SM/evapotranspiration regimes, with individual model behavior and biases illumi-
nated by the relative differences in the frequency of occurrence of each regime, shown here for changes in LH 
(Figure 2). The alignment of the change patterns with the widely used regimes (the moisture-limited dry and 
transitional regimes, and the energy-limited regime) demonstrates the importance of the critical SM separating 
energy- and moisture-limited conditions. Our analysis reveals the need to introduce the active-rain regime to 
further differentiate the conventional energy-limited regime when considering multiple aspects of hydroclimate 
changes. Contrasting behavior of changes in P − E in these two regimes reflects the fact that rainfall is a highly 
intermittent process, balanced by the slowly-varying evapotranspiration. The reduction in rainfall at intermediate 
SM percentiles indicates a tendency to repartition the total rainfall toward fewer but stronger rainfall days. The 
AI/SM phase space clearly reveals how this effect has a pronounced impact for the land hydroclimate in that it 
pushes land for a larger fraction of time into the SM limited regime. As evident in Figure 3c, this regime shift 
also contributes to the larger warming over land relative to that over the oceans. Land hydroclimatic changes 
under global warming thus may not be understood from the present distribution of hydroclimate regimes alone, 
as changes in the occurrence frequency of the regimes can be similarly important.
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The emergence of mechanistic, coherent patterns of land hydroclimate change in the AI/SM percentile phase 
space suggests that this phase space may prove useful for several applications. As the example of the different 
evapotranspiration changes (Figure 2) shows, the AI/SM phase space allows a compact, efficient identification of 
similarities and differences between models and possibly also between models and observations, and by virtue of 
retaining the daily timescale, allows a mechanistic interpretation thereof. Moreover, while the importance of the 
SM constraint on evapotranspiration is widely acknowledged, expansion of large-scale theories of changes in the 
hydrological cycle to properly account for this constraint remains incomplete. The emergence of clear patterns 
that can be sensibly interpreted mechanistically may provide new motivation and inspiration for a theory that 
bridges local and global constraints.

Data Availability Statement
CMIP5 and CMIP6 model outputs used in this study were downloaded from the CMIP data portal (https://esgf-
node.llnl.gov/search/cmip5/ and https://esgf-node.llnl.gov/search/cmip6/), and the CEDA data archive (http://
data.ceda.ac.uk/badc/cmip5/data/cmip5/output1/ and https://data.ceda.ac.uk/badc/cmip6/data/CMIP6/CMIP/). 
Data in these archives are openly available and can be downloaded by selecting names of models, experiments, 
and variables. The list of models, experiments, and variables used in this study are described in Section 2.1.
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